Credentials Management for High-Value Transactions

Glenn Benson¹ Shiu-Kai Chin² Sean Croston¹ **Karthick Jayaraman**² Susan Older²

¹Treasury Services, JPMorgan Chase, Inc

²Dept. of EECS, Syracuse University

Mathematical Methods, Models, and Architectures for Computer Network Security (MMM ACNS) 2010

High Value Online Transactions

- Wholesale banking
 - Customers : large corporations and governments
 - Transaction statistics
 - \$58 millions per second
 - \$5.1 Trilion one-day maximum
- Security requirement
 - Assurance of trustworthiness
- Business requirement
 - Interoperable credentials

Public Key Infrastructure

PKI Providers

- A third party who provides credentials to a subscriber, corporations in our case
- Provides validation services to the relying party, Banks in our case

Banks - Relying Party

- Receive a transaction signed with a credential
- Connect to the appropriate PKI provider using their protocol to validate the credential

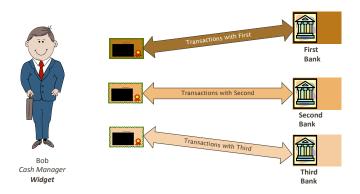
Corporations - Subscribers

- Obtains a credential from a PKI provider
- Wants the credential to be accepted by all banks

PKI is a poor match for wholesale banking

Liability

- A PKI provider vouches for the crdential, but will not accept liability
- Authorization is outside the scope of their services


Multiple Validation Protocols

- Banks have to deal with the protocols of each PKI provider
- Maintaining infrastructure for dealing each PKI provider is costly

One size does not fit all

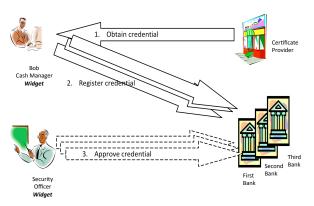
- PKI assumes uniform controls
- Banks need to enforce controls depending on bilateral agreements

Each Bank Trusts Itself Only

Purpose and Preview

Purpose

- Introduce Partner Key Management (PKM)
- Describe our assurance approach

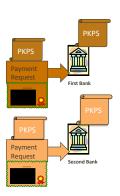

Preview

- Overview of PKM
 - Interoperable credentials
 - Varying controls
 - Flexible trust models
- Formal Analysis

Partner Key Management

Interoperable Credentials

Credential Registration



Credential Registration

└─ Varying Controls

Varying Controls

- Controls and limits on credentials
 - Agreed bilaterally between partners
 - Varies between partners
- Partner Key Practice Statement (PKPS)
 - Machine readable document
 - A Bank's policy on credentials
 - Specific to a partner and a set of transactions

Varying Controls

Partner Key Practise Statement

- Specifies four types of controls
 - Credential policy
 - Revocation policy
 - Timestamp policy
 - Signature policy
- A type of WS-Policy

Partner Key Management

Flexible Trust Models

Flexible Trust Models

Sender Validation with Evidence

- Signer connects to the PKI provider and validates the key
- Signs the validation certificate and includes it in the transaction

Sender Validation without Evidence

- Corporation has a proprietary protocol for communicating the key status to the bank
- Bank validates the key based on the key status

Receiver Validation

Bank connects to PKI provider to validate the keys

Assurance Approach

- Access-control logic
 - Modification of multi-agent propositional modal logic created by Abadi, Burrows, Lampson, and Plotkin
 - Implemented as a conservative extension to the Cambridge Higher Order Logic (HOL-4) Kananaskis 5 theorem prover
- Used to
 - Describe the protocol
 - Assure the logical consistency of operations
 - Make trust assumptions explicit

Inference Rules

RULES

- Inconvenient to use Kripke semantics
- Use inference rules $\frac{H_1 \cdot \cdot \cdot H_n}{C}$ instead

SOUNDNESS

 $\frac{H_1 \cdots H_n}{C}$ is sound if for all Kripke structures \mathcal{M} and each $i \in \{1, \dots, n\}$:

If
$$\mathcal{E}_{\mathcal{M}}\llbracket H_i \rrbracket = W$$

then $\mathcal{E}_{\mathcal{M}}\llbracket C \rrbracket = W$

- All rules are sound
- All verified in HOL-4 K-5 theorem prover

CORE INFERENCE RULES

$$\textit{Monotonicity of} \mid \begin{array}{c} P' \Rightarrow P \quad Q' \Rightarrow Q \\ \hline P' \mid Q' \Rightarrow P \mid Q \end{array} \textit{ Associativity of} \mid \begin{array}{c} P \mid (Q \mid R) \text{ says } \varphi \\ \hline (P \mid Q) \mid R \text{ says } \varphi \end{array}$$

 $P ext{ controls } arphi \stackrel{ ext{def}}{=} (P ext{ says } arphi) \supset arphi P ext{ reps } Q ext{ on } arphi \stackrel{ ext{def}}{=} P \mid Q ext{ says } arphi \supset Q ext{ says } arphi$

Formal Analysis

Assurance Approach

First Bank

Uses PKM and Sender Validation without Evidence

Request

- K_{Alice} says \(\langle transfer \\$10^6\), acct₁, acct₂\\,
- K_{Alice} says Ψ_{PKPS}

Operating Rules

- 1. First controls ($K_{Alice} \Rightarrow Alice$),
- 2. K_{Alice} says $\Psi_{PKPS} \land \langle K_{Alice}, Active \rangle$ $\supset First$ says $K_{Alice} \Rightarrow Alice$

Inference Rule

```
K_{Alice} \text{ says } \langle transfer \$10^6, acct_1, acct_2 \rangle \\ K_{Alice} \text{ says } \Psi_{PKPS} \quad \langle K_{Alice}, Active \rangle \\ First \text{ controls } K_{Alice} + Alice \\ Alice \text{ controls } \langle transfer \$10^6, acct_1, acct_2 \rangle \\ First \text{ Bank} \\ \hline K_{Alice} \text{ says } \Psi_{PKPS} \land \langle K_{Alice}, Active \rangle \supset First \text{ says } K_{Alice} \Rightarrow Alice \\ \langle transfer \$10^6, acct_1, acct_2 \rangle \\ \hline \langle transfer \$10^6, acct_1, acct_2 \rangle \\ \hline
```

PKI vs PKM

	Public Key Infrastructure	Partner Key Management
Authority	$\mathit{CA}\ controls\ \mathit{K}_{\mathit{P}}\ \Rightarrow\ \mathit{P}$	Bank controls $K_P \Rightarrow P$
Certificate	CA says $\mathit{K}_{\mathit{P}} \Rightarrow \mathit{P}$	$\langle K_P, Active \rangle \supset Bank $ says $K_P \Rightarrow P$
Policy	Not Applicable	[conditions] $\supset \langle K_P, Active \rangle$

Results

- PKM trust assumptions commensurate with PKI
- PKM's reinterpretation of authority provides
 - Appropriate liability attribution
 - Flexible trust models
 - Controls based on bilateral agreements

Concluding Remarks

- Assurance for high value online transactions requires:
 - Precise statement of trust assumptions
 - Unambiguous interpretation of policies
- "Access-control logic satisfies the need"
 - Glenn Benson, Security Architect, JPMorgan Chase.
- Ongoing work
 - Additional trust models
 - Complete reference manual for the protocol