Genetic Optimization of Access Control Schemes in Virtual Local Area Networks

Igor Saenko and Igor Kotenko

St. Petersburg Institute for Informatics and Automation (SPIIRAS)

Previous Works

- [Hidemoto Nakada, etc., 2009]: propose to employ Genetic Algorithm (GA) method to solve the virtual machine packing problem in cloud systems, but the goal is to enable efficient resource provisioning.
- [Ning Hu, etc., 2006]: is a good example of applying GA in information security problems, but not for VLAN and in conjunction with the RBAC.
- [Cheng-Feng Tai, etc., 2010]: propose to assist the best known clustering algorithms for constructing a virtual subnet, but the goal is to improve group communication efficiency.

We have:

- local network with VLAN opportunities;
- required access scheme of users to information resources;
- resources may have the shared access flags without passwords

We need:

- distribute users and resources on network nodes;
- set flags on resources;
- divide network onto subnets

in order to

ensure confidentiality and availability of information

Access Control Mechanisms in VLAN

- Formal Task Statement
- Method of Solving (Genetic Algorithm)
- Evaluation
- Conclusion and Future Work

Distribution Information Resources and Users on Network Nodes

Virtual Subnets

Access Rules in VLAN

No.	Predicates for Subject S access Object O				
1	(V(O) = 0) & (R(S, U) = 1) & (H(O, U) = 1)				
2	(V(O) = 1) & (R(S, U1) = 1) & (H(O, U2) = 1) & (VLAN(U1, U2) = 1)				

V(O) – object O has flag;

R(S, U) – user S works on node U;

H(O, U) – object O is stored on node U;

VLAN(U1, U2) – node U1 and node U2 belong to the same subnet

Outline (2)

- Access Control Mechanisms in VLAN
- Formal Task Statement
- Method of Solving (Genetic Algorithm)
- Evaluation
- Conclusion and Future Work

Initial Data

Set of access objects	$\mathbf{OD} = od_i$,		
Set of access subjects	$\mathbf{SD} = sd_j$		
Set of network nodes	$\mathbf{U} = u_k$		
Required access control scheme	$\mathbf{R}^{\text{req}} = \begin{bmatrix} r^{\text{req}} \\ ij \end{bmatrix},$ $r^{\text{req}} \in 0;1$		

Variables

Matrix of distribution of objects on network nodes	$\mathbf{D}^{OU} = \left[d^{OU}_{ik}\right]$
Matrix of distribution of subjects on network nodes	$\mathbf{D}^{SU} = \left[d^{SU}_{jk}\right]$
Vector of shared access flags	$\mathbf{V} = v_i$
Matrix of VLAN structure	$\mathbf{X} = x_{mn}$, $x_{mn} \in 0;1$

Object Function

Unconditional scheme
$$\mathbf{R}^{\text{un}}$$
: $r^{\text{un}}_{ij} = \sum_{k=1}^{K} d^{SU}_{ik} \cdot d^{OU}_{kj}$ (1)

"Conditional on V" scheme
$$\mathbf{R}^{V}$$
: $r_{ij}^{V} = r_{ij}^{un} + v_i \cdot 1 - r_{ij}^{un}$ (2)

Real scheme
$$\mathbf{R}^{\text{real}}$$
: $r^{\text{real}}_{ij} = \sum_{k=1}^{K} x_{ik} \cdot r^{V}_{kj}$ (3)

Indicator of confidentiality:
$$F^{\text{conf}} = \sum_{i=1}^{I} \sum_{j=1}^{J} \max 0, \ r^{\text{real}}_{ij} - r^{\text{req}}_{ij}$$
 (4)

Indicator of availability:
$$F^{\text{conf}} = \sum_{i=1}^{I} \sum_{j=1}^{J} \max \ 0, \ r^{\text{req}}_{ij} - r^{\text{real}}_{ij}$$
 (5)

Object function:
$$F = \alpha F^{\text{conf}} + \beta F^{\text{accs}}$$
 (6)

Outline (3)

- Access Control Mechanisms in VLAN
- Formal Task Statement
- Method of Solving (Genetic Algorithm)
- Evaluation
- Conclusion and Future Work

What is Genetic Algorithm?

Chromosomes (Variable Coding)

1-st chromosome consists of file numbers $\{r_i\}$ which is stored on nodes $\{j\}$):

$$R_{chr} = r_1, r_2, ..., r_i, ..., r_i \in 1; 2; ...; J$$
 (1)

For example: $R_{chr} = 4,1,3,5,2$

2-nd chromosome reflects shared access flags:

$$V_{chr} = v_1, v_2, ..., v_i, ..., v_i \in 0;1$$
 (2)

For example: $V_{chr} = 111010$

3-d chromosome consists of the elements of the matrix **X** under main diagonal:

$$X_{chr} = x_{12},...,x_{1K};x_{23},...,x_{2K};...;x_{K-1,K}, x_{ij} \in 0;1$$

For example: $X_{chr} = 0101/111|10|1$

(3)

Crossover

Outline (4)

- Access Control Mechanisms in VLAN
- Formal Task Statement
- Method of Solving (Genetic Algorithm)
- Evaluation
- Conclusion and Future Work

Required and Resulting Schemes

Fig.1. Required Scheme

Fig. 2. Resulting distribution and VLAN-dividing

Initial population

Av.

Population #2

Av.

Population #4

Av.

Population #20

Av.

Population #60

Av.

Security Evaluation

I	P_0	$p_{ m pw}$	N_1	N_2	P_1	P_2	k _{UAA}
6	10 ⁻⁴	10 ⁻⁴	6	0	0,00070	10 ⁻⁴	7,00
6	10 ⁻⁵	10 ⁻⁴	6	0	0,00061	10 ⁻⁵	60,98
6	10 ⁻⁴	10 ⁻⁵	6	0	0,00016	10 ⁻⁴	1,60
12	10 ⁻⁴	10 ⁻⁴	12	5	0,00130	0,00060	2,17
12	10 ⁻⁴	10 ⁻⁴	12	5	0,00121	0,00051	2,37
12	10 ⁻⁴	10 ⁻⁵	12	5	0,00022	0,00015	1,47
20	10 ⁻⁴	10 ⁻⁴	20	18	0,00210	0,00190	1,11
20	10 ⁻⁴	10 ⁻⁴	20	18	0,00201	0,00180	1,11
20	10 ⁻⁴	10 ⁻⁵	20	18	0,00030	0,00028	1,07

- where P_0 the probability of unauthorized access the information caused by the reasons other than the compromise of shared passwords;
 - p_{pw} the probability of password compromising;
- N_1 , N_2 the number of objects which require access password protection in the traditional case and in the case of using the proposed method, respectively;
- P_1 , P_2 the probability of unauthorized access in the traditional case and in the case of using the proposed method, respectively;
- $k_{UAA} = P_1 / P_2$ degree of security increase.

Outline (5)

- Access Control Mechanisms in VLAN
- Formal Task Statement
- Method of Solving (Genetic Algorithm)
- Evaluation
- Conclusion and Future Work

Conclusion and Future Work

 Poly-chromosomal GA is a flexible and powerful method for tasks with various access control criteria

 We plan to implement GA for solving Role-Mining Problem.

