

AGENT-BASED SIMULATION OF DISTRIBUTED DEFENSE
AGAINST COMPUTER NETWORK ATTACKS

Igor Kotenko and Alexander Ulanov

St. Petersburg Institute for Informatics and Automation
39, 14th Liniya, St. Petersburg, 199178, Russia

E-mail: {ivkote, ulanov}@iias.spb.su

KEYWORDS
Agent-based Simulation, Teamwork, Security,
Computer network attacks, Distributed Denial of
Service

ABSTRACT

The paper describes the agent-based approach and
software environment (based on OMNeT++ INET
Framework) developed for simulation of distributed
defense mechanisms which can be deployed in the
Internet for counteraction to computer network attacks.
According to the approach suggested, the cybernetic
counteraction of “bad guys” and security systems is
represented by the interaction of different agent teams.
The main components of the software environment are
outlined. One of the experiments on protection against
attacks “Distributed Denial of Service” is described.

1. INTRODUCTION

The problems of information security modeling and
simulation are actively discussed in the long period of
time. There was developed the number of different
models of particular defense mechanisms and they were
simulated successfully. But, as before we lack for
advanced models and simulation environments that let
formalize the complex antagonistic nature of
information security as complicated technical-
organizational process.

This paper proposes an agent-based approach and
software environment for simulation of counteraction
between malefactors and defense systems in the Internet
represented as an antagonistic interaction of different
teams of software agents. Agent-based modeling and
simulation of network security in the Internet assumes
that agent competition is represented as a large set of
semi-autonomous interacting agents (Kotenko 2005).
The aggregate system behavior emerges from evolving
local interactions of agents in a dynamically changing
environment specified by computer network model. Our
approach is based on agent teamwork frameworks
(Cohen and Levesque 1991; Fan and Yen 2004; Grosz
and Kraus 1996; Kotenko and Stankevich 2002; Tambe
1997; Tambe and Pynadath 2001; Yen et al. 2001;
etc.). We investigate our approach on an example of
simulating defense methods against one of the most
harmful classes of computer network attacks –

“Distributed Denial of Service” (DDoS) (Mirkovic et al.
2004).

The idea of DDoS attack consists in reaching the global
goal – the denial of service of some resource (for
example Web-server) – due to joint efforts of many
hosts (zombies) that are acting on attack side sending a
huge number of network inquiries to the victim host
(network). The main task of defense systems against
DDoS is to accurately detect these attacks and quickly
respond to them (Xiang and Zhou 2004). Traditional
defense include detection and reaction mechanisms
(Xiang et al. 2004). Adequate victim protection can
only be achieved by cooperation of different distributed
components (Mirkovic et al. 2005). So, the DDoS
problem requires a distributed cooperative solution
(Mirkovic et al. 2004; Mirkovic et al. 2005). There are a
lot of architectures for distributed cooperative defense
mechanisms (Chen and Song 2005; Papadopoulos
2003; Keromytis et al. 2003; Xuan al. 2002; Xiang and
Zhou 2004; Mirkovic et al. 2004; etc.).

Our goal is to try to simulate different DDoS defense
methods and develop the investigation environment
which can help elaborate well-grounded
recommendations on the choice of efficient defense
mechanisms. In (Kotenko 2005) we described the
ontology of DDoS attacks and defense mechanisms,
presented specifications of structure of DDoS and
defense agents’ team, described the formal model of
computer network and determined software prototypes
on Visual C++ 6.0 and Java 2 and experiments with
them. In this paper, based on the main ideas considered
in (Kotenko 2005), we define more exactly the used
agent-based approach, consider a new powerful
simulation environment developed on OMNeT++ INET
Framework and demonstrate the possibilities of this
environment on an example of one of many experiments
on protection against attacks “Distributed Denial of
Service”. The rest of the paper is structured as follows.
Section 2 outlines suggested agent-based approach for
modeling and simulation. Section 3 describes the
software environment developed for simulation. Section
4 presents one of simulation scenarios fulfilled.
Conclusion outlines the main results of the paper and
future work directions.

2. AGENT-BASED APPROACH FOR
SIMULATION OF DISTRIBUTED DEFENSE

The problem of multi-agent modeling and simulation of
cybernetic opposition processes is represented as the
task of antagonistic interaction of the agents-
malefactors’ team and the defense team (Kotenko
2005). The agents of different teams compete to reach
the opposite intentions. The agents of one team
cooperate to realize the overall intention (implementing
the threat or defense of computer network).

It is offered that each team of agents is organized by the
group (team) plan of the agents’ actions. As result, a
team has a mechanism of decision-making about who
will execute particular operations. The agents’ team
structure is described in terms of a hierarchy of group
and individual roles. Leaves of the hierarchy correspond
to the roles of individual agents, but intermediate nodes
– to group roles. One agent can execute a set of roles.
Agents can exchange roles during the plan execution.
The communications between agents are caused by joint
intentions and rules that every agent has. Pro-active and
reactive communications take place in the team. As the
agents’ teams operate in antagonistic environment,
agents can fail. The lost functionalities are restored by
redistributing the roles of failed agents between other
agents and (or) cloning new agents. The team members
have the shared mental model. The agents can make the
“cutoff” of the team mental state due to forming the
joint intentions on the different levels of abstraction.
The hierarchy of intentions is jointly established by the
team members to make the team reach its goal in
coordinated way. This is the consequence of agents’
joint responsibilities.

Let us represent the DDoS attack system as an agent
team. The agents aim the shared goal – the realization of
attack “denial of service” for some host or network.
Analyzing the present DDoS methods it is possible to
determine at least two types of attack components:
“Daemon” executes the attack directly; “Master”
coordinates the actions of other components. Daemons
act on lower level. After receiving the messages from
masters, they start or finish sending the attack packets
or change the attack intensity. On the preliminary stage
the master and daemons are deployed on available
(compromised) hosts in the Internet. The important
parameters on this stage are agents’ amount and their
state of distribution. Then the attack team is established:
daemons send to master the messages saying they are
alive and ready to work. Master stores the information
about team members and their state. The malefactor sets
the common goal of team – to perform DDoS attack.
Master receives attack parameters. Its goal is to
distribute these parameters among all available
daemons. Then daemons act. Their local goal is to
execute the master command. To fulfill attack they send
the attack packets to the given host. Master asks
daemons periodically to find out that they are alive and

ready to work. Receiving the messages from daemons
the master manages the given rate of attack. If there is
no any message from one of the daemons the master
makes the decision to change the attack parameters. For
example, it can send to some or all daemons the
commands to change the attack rate. Daemons can
execute the attack in various modes. This feature affects
on the potentialities of defense team. Daemons can send
the attack packets with the various rate, spoof source IP
address and do it with various rates.

The general approach to the DDoS defense is the
following. The information about normal traffic is
collected from different network sensors. Then the
analyzer-component compares in real-time the current
traffic with the normal traffic. The system tries to trace
back the source of anomalies (due to “traceback”
mechanisms) and generates the recommendations how
to cut off them or how to lower the quantity of these
anomalies. Depending on security administrator’s
choice, the system applies some countermeasure. In
compliance with the general approach we set the
following defense agent classes: “Sensor” – agent of
initial information processing; “Sampler” – the network
data collector that forms the traffic model; “Detector” –
attack detection agent; “Filter” – agent of attack traffic
filtering; “Investigator” – agent of attack investigation.
In the initial moment of time the defense agents are
deployed on hosts corresponding to their roles: sensor is
deployed on the way of traffic to defended host;
sampler – on any host in defended subnet; detector – on
any host in defended subnet; filter – on the entrance to
defended subnet; investigator – on any host beyond the
subnet. The joint goal of defense team is to protect
against DDoS attack. Detector watches on its
accomplishing. Sensor processes information about
network packets and collects statistic data on traffic for
defended host.

Samplers are deployed in the defended subnet to collect
the data on its normal functioning and to detect
anomalies. The examples of implemented detection
mechanisms are “Hop Count Filtering” (HCF) (Jin et al.
2003) and “Source IP address monitoring” (SIPM)
(Peng et al. 2003). The local sub-goals of sampler
implementing these methods can be as follows: sending
to detector the message of its workability; network
packets processing; building the table of IP addresses
for HCF and the table of hops for SIPM; anomaly
detection; forming and sending the messages to filter
the traffic from suspicious IP addresses. Sampler builds
the traffic model in the learning mode. The traffic
model is based on two tables mentioned. The first
consists of “approved” IP addresses, the second – of
“approved” set of distances to other subnets. It is built
based on the following relations: <the first 24 bits of
address – the amount of hops>. When sampler is in the
normal mode it analyses each incoming packet, takes
the IP address and calculates the hops amount. It looks

in the corresponding tables the coincidences. If one of
results is negative, then sensor sends to filter the
command to filter the packets coming from this IP
address. Each of mechanisms has the counter of
detected “malicious” addresses to compare their
effectiveness.

Detector’s local goal is to make the decision if the
attack happens. In developed prototype the following
method is realized. If detector decides that there is a
DDoS attack on the basis of data from sensors and
samplers. It sends its decision and N addresses of attack
hosts to filter and to investigator. Filter’s local goal is
to filter the traffic on the basis of data from detector. If
it was determined that the network is under attack, then
filter begins to filter the packets from the given hosts.
The goal of investigator is to identify and defeat the
attack agents. When investigator receives the message
from detector, it examines the given addresses on the
presence of attack agents and tries to defeat them.

3. SIMULATION ENVIRONMENT

To choose the simulation tool the comprehensive
analysis of the following systems was made: NS2
(NS2), OMNeT++ INET Framework (OMNeT++), SSF
Net (SSF Net), J-Sim (J-Sim) and some others. We
discovered that the OMNET++ INET Framework
satisfies to these requirements best of all. OMNET++ is
the discrete event simulator (OMNeT++). The change
of state happens in the discrete moments of time. The
simulation is being held by the future event list sorted
by time. The event may be the beginning of packet
transmission, time-out, etc. The events occur inside the
simple modules. Such modules have the functions of
initialization, message processing, action (alternatively),
end of work. The exchange of messages between
modules happens due to channels (modules are
connected with them by the gates) or directly by gates.
A gate can be incoming or outgoing to receive or to
send messages accordingly.

Agents are deployed on the hosts in the simulation
environment. They are installed by connecting to the
modules serving transport and network layers of
protocol stack simulated in OMNeT++ INET
Framework. The generalized representation of agent
“sampler” structure is depicted in Figure 1. Sampler
contains the transport layer (depicted as a message),
needed to communicate with other agents, network
layer (depicted as a blue cube) to collect traffic data and
agent kernel (depicted as a blue shape of human figure).
The latter contains the communication language, the
knowledge base and the message handlers from the
neighbor modules. The representation of sampler
deployment into the simulation environment is depicted
in Figure 2. One can see that agent is plugged into the
host through the “tcp” module. Agent is also connected
with the “sniffer” module that is used to analyze the
network packets.

At the basic window of visualization (Figure 3, at upper
right), a simulated computer network is displayed. The
network represents a set of the hosts and channels.
Hosts can fulfill different functionality depending on
their parameters or a set of internal modules. Internal
modules are responsible for functioning of protocols
and applications at various levels of OSI model. Hosts
are connected by channels which parameters can be
changed. Applications (including agents) are
established on hosts. Applications are connected to
corresponding modules of protocols. The window for
simulation management (Figure 3, on the right in the

Figure 1. Generalized representation
of agent “sampler” structure”

Figure 2. Representation of agent “sampler”
deployment

middle) allows looking through and changing
simulation parameters. It is important that it is possible
to see the events which are valuable for understanding
attack and defense mechanisms on time scale.
Corresponding status windows (Figure 3, at upper left)
show the current status of agents’ teams. It is possible to
open different windows which characterize functioning
(the statistical data) of particular hosts, protocols and
agents.

Since all simulated processes take place in the Internet,
the network model should be in the heart of simulation
environment. One of the examples of computer
networks for simulation is represented in Figure 4. We
used different configurations of computer networks.
Each network is represented as a set of hosts connected
by the channels. Hosts can fulfill different functionality
depending on their parameters or a set of internal
modules. The routers are labeled with the sign “ ”.The
hosts are connected with the channels. Their parameters
can be changed. They are as follows: Delay – delay of
packets propagation; Datarate – the speed of packets
transmission. The hosts where attack agents are
deployed are red; the hosts with defense agents are

green. Above the colored hosts there are the strings that
indicate the corresponding state of deployed agents. The
other hosts are the standard hosts that generate the
generic network traffic. Each network host can consist
of the following modules: ppp is responsible for the
data link layer (the router can have several ppp
according to the number of interfaces); networkLayer is
for the network layer; pingApp is responsible for
applications using ICMP; tcp serves for TCP; udp is
serving for UDP; tcpApp[0] is the TCP application
(there can be a number of them); notificationBoard is
used for logging the events on host; interfaceTable
contains the table of network interfaces; routingTable
contains the routing table; filterTable contains the
filtering table. The applications (including the agents)
are installed on the hosts by connecting to appropriate
protocol modules. Each network for simulation consists
of three sub-networks: (1) The subnet of defense where
the defense team is deployed; (2) The intermediate
subnet where the standard hosts are deployed. Hosts
produce generic traffic including the traffic to defended
host; (3) The subnet of attack where the attack team is
deployed.

Figure 3. Examples of windows used during simulation process

4. SIMULATION EXAMPLE

We are in the process of implementing simulation
experiments for different cooperative active and passive
defense mechanisms against DDoS attacks, including
”hop-by-hop” IP traceback, backscatter traceback,
overlay networks for ip-traceback, large scale IP
traceback, server roaming, congestion puzzles, change-
point detection, selective pushback, aggregate based
congestion control and pushback, etc.

Let us examine one of simple simulation scenarios to
demonstrate possibilities of the software environment.
The routers in this network are connected by fiberglass
channels with bandwidth 512 Mbit. The other hosts are
connected by 10 Mbit Ethernet channels.

Some time after the start of simulation, clients begin to
send the requests to server and it replies. That is the way
generic (normal) network traffic is generated. The
formation of defense team begins some time after the
start of simulation. The defense agents (investigator,
sensor and filter) connect to detector. They send to
detector the messages saying that they are alive and
ready to work. Detector stores this information to its
knowledge base. The formation of attack team occurs in
the same way. The defense team actions begin after the
team formation. Sensor starts to collect the traffic

statistics (the amount of transmitted bytes) for every IP-
address. Detector gets statistics and detects if there is an
attack. Then it connects to filter and investigator and
sends them the IP-addresses of suspicious hosts.

When attack actions begin, master requests every
daemon if it is alive and ready to work. When all
daemons were examined, it occurs that they all are
workable. Master calculates the rate of attack for every
daemon. Then master sends the corresponding attack
command to every daemon. Daemons start the attack by
sending, e.g., the UDP packets to the victim server with
the given rate. Sensors and samplers send to detector the
list of IP addresses and the amount of bits transmitted
for the given time interval. Detector determines which
hosts (IP addresses) transmit the traffic that exceeds the
maximum allowable size. Detector sends these
addresses to filter to apply filtering rules and to
investigator to trace and defeat the attack agents. After
applying the filtering rules by filter the traffic to the
server was lowered. And agent-investigator tries to
defeat attack agents. It succeeds to defeat two of them.
The remaining daemon continues the attack. Master
redistributed the attack load for it. But the attack
packets do not reach the goal and are filtered at the
entrance of the defended network.

Figure 4. Example of a computer network for simulation

5. CONCLUSION

The main results of the work we described in the paper
consist in developing basic ideas on agent-based
simulation of distributed defense mechanisms (on an
example of protecting against attacks DDoS) and
implementing corresponding software environment.
According to suggested approach, the cybernetic
opposition of malefactors and security systems is
represented by the interaction of different teams of
software agents – malefactors’ team and defense team.
The environment developed is written in C++ and
OMNeT++ INET Framework. It allows imitating a wide
spectrum of real life DDoS attacks and defense
mechanisms. Different experiments with this
environment have been fulfilled. These experiments
include the investigation of attack scenarios and
protection mechanisms for the networks with different
structures and security policies. One of the scenarios
was demonstrated in the paper. Future work is
connected with building more realistic environment,
and conducting experiments to both evaluate network
security and analyze the efficiency and effectiveness of
security policy against different attacks.

6. ACKNOWLEDGEMENT

This research is being supported by grant of Russian
Foundation of Basic Research (№ 04-01-00167), grant
of the Department for Informational Technologies and
Computation Systems of the Russian Academy of
Sciences (contract №3.2/03) and partly funded by the
EC as part of the POSITIF project (contract IST-2002-
002314).

REFERENCES

Chen, S. and Q. Song. 2005. “Perimeter-Based Defense
against High Bandwidth DDoS Attacks”. IEEE
Transactions on Parallel and Distributed Systems, Vol.16,
No.7.

Cohen, P.R. and H.J. Levesque. 1991. “Teamwork”. Nous,
25(4).

Fan, X. and J. Yen. 2004. “Modeling and Simulating Human
Teamwork Behaviors Using Intelligent Agents”. Journal
of Physics of Life Reviews, Vol. 1, No.3.

Grosz, B. and S. Kraus. 1996. “Collaborative plans for
complex group actions”. Artificial Intelligence, Vol.86.

Jin, C.; H. Wang; K.G. Shin. 2003. “Hop-count filtering: An
effective defense against spoofed DDoS traffic”.
Proceedings of the 10th ACM Conference on Computer
and Communications Security.

J-Sim. http://www.j-sim.org
Keromytis, A.D.; V. Misra; D. Rubenstein. 2003. “SOS: An

architecture for mitigating DDoS attacks”. Journal on
Selected Areas in Communications, Vol. 21.

Kotenko, I. and L. Stankevich. 2002. “The Control of Teams
of Autonomous Objects in the Time-Constrained
Environments”. Proceedings of the IEEE International
Conference “Artificial Intelligence Systems, IEEE
Computer Society.

Kotenko, I. 2005. “Agent-Based Modeling and Simulation of
Cyber-Warfare between Malefactors and Security Agents

in Internet”. 19th European Simulation Multiconference
“Simulation in wider Europe”.

Mirkovic, J.; S. Dietrich, D. Dittrich, P. Reiher. 2004.
“Internet Denial of Service: Attack and Defense
Mechanisms”. Prentice Hall PTR.

Mirkovic, J.; M. Robinson; P. Reiher; G. Oikonomou. 2005.
“Distributed Defense Against DDOS Attacks”. University
of Delaware CIS Department Technical Report CIS-TR-
2005-02.

NS2. http://www.isi.edu/nsnam/ns/
OMNeT++. http://www.omnetpp.org/
Papadopoulos, C.; R. Lindell; I. Mehringer; A Hussain;

R. Govindan. 2003. “Cossack: Coordinated suppression
of simultaneous attacks”. Proceedings of DISCEX III.

Peng, T.; L. Christopher; R. Kotagiri. 2003. “Protection from
Distributed Denial of Service Attack Using History-based
IP Filtering”. IEEE International Conference on
Communications.

SSF Net. http://www.ssfnet.org
Tambe, M.: 1997. “Towards flexible teamwork”. Journal of

AI Research, Vol.7.
Tambe, M. and D.V. Pynadath. 2001. “Towards

Heterogeneous Agent Teams”. Lecture Notes in Artificial
Intelligence, Vol.2086.

Xiang, Y. and W. Zhou. 2004. “An Active Distributed
Defense System to Protect Web Applications from DDoS
Attacks”. The Sixth International Conference on
Information Integration and Web Based Application &
Services.

Xuan, D.; R. Bettati; W. Zhao. 2002. “A gateway-based
defense system for distributed dos attacks in high-speed
networks”. IEEE Transactions on Systems, Man, and
Cybernetics.

Xiang, Y.; W. Zhou; M. Chowdhury. 2004. “A Survey of
Active and Passive Defence Mechanisms against DDoS
Attacks”. Technical Report, TR C04/02, School of
Information Technology, Deakin University, Australia.

Yen, J.; J. Yin; T.R. Ioerger; M. Miller; D. Xu; R. Volz.
2001. “CAST: Collaborative agents for simulating
teamworks”. Proceedings of IJCAI'2001.

BIOGRAPHY

IGOR KOTENKO graduated with
honors St.Petersburg Academy of Space
Engineering and St.Petersburg Signal
Academy. He obtained the Ph.D. degree
in 1990 and the National degree of Doctor
of Engineering Science in 1999. He is

Professor of computer science. He is leading the
computer security research group in St. Petersburg
Institute for Informatics and Automation. His e-mail
address is ivkote@iias.spb.su and his Web-page can be
found at http://space.iias.spb.su/ai/kotenko/.

ALEXANDER ULANOV graduated
from St. Petersburg State Politechnical
University (2004), received his master's
degree (2004) in the area “System
analysis and control”. He is PhD student
in the field of agent-based modeling and

simulation for computer network attacks. His e-mail
address is ulanov@iias.spb.su and his Web-page can be
found at http://space.iias.spb.su/ai/ulanov/ .

	c0: Proceedings 20th European Conference on Modelling and SimulationWolfgang Borutzky, Alessandra Orsoni, Richard Zobel © ECMS, 2006ISBN 0-9553018-0-7 / ISBN 0-9553018-1-5 (CD)

