Simulation Environment
for Investigation
of Cooperative Distributed
Attacks and Defense

lgor Kotenko, Alexander Ulanov
Computer Security Research Group,

St. Petersburg Institute for Informatics and Automation
of Russian Academy of Sciences (SPIIRAS)

{ivkote, ulanov}@iias.sbp.su
RAID’06, Hamburg, Germany, September 20 — 22, 2006

‘-i Goal of our Research

= The goal of our research is development of theoretical
and practical (instrumental) basis for agent-based
modeling and simulation for cyber warfare.

= The paper considers the approach and software
simulation tool developed for comprehensive
Investigation of Internet DDoS attacks and defense
mechanisms.

= The simulation tool can be characterized by three main
peculiarities:
- agent-oriented approach to simulation,
- packet-based imitation of network security processes,
- open library of different DDoS attacks and defense
mechanisms.

RAID’06, Hamburg, Germany, September 20 — 22, 2006

‘h Related Works on Defense against DDoS

. 'IJhe main task of defense systems against DDoS is to accurately
detect these attacks and quickly respond to them [Xiang, Zhou, 04].

* It is equally important to recognize the legitimate traffic that shares
the attack signature and deliver it reliably to the victim [Mirkovic, et
al., 05].

» Traditional defense include detection and reaction mechanisms
[Xiang, et al., 05].

« Different network characteristics are used for detection of malicious
actions (for example, the source IP address [Peng, et al., 05 |, the
traffic volume [Gil, Poletto, 03], and the packet content
[Papadopoulos, 03]).

» To detect the abnormal network characteristics, many methods can
be applied (for instance, statistical [Li, et al., 05], cumulative sum,
pattern matching, etc).

» As a rule, the reaction mechanisms include filtering [Park, Lee, 01 |,
congestion control [Mahajan, et al., 02] and traceback [Kuznetsov, et
al., 02].

RAID’06, Hamburg, Germany, September 20 — 22, 2006 3

Related Works on Defense against DDoS
‘h by Cooperative Actions

» Active Security System, comprising components that actively cooperate in order
to effectively react to a wide range of attacks [Canonico,et al., 01].

» COSSACK [Park, Lee, 01] forms a multicast group of defense nodes which are
deployed at source and victim networks.

» Secure Overlay Services (SOS) [Keromytis, et al., 03] uses a combination of
secure overlay tunneling, routing via consistent hashing, and filtering.

A collaborative DDoS defense system proposed in [Xuan , et al., 02] consists of
routers which act as gateways. They detect DDoS attacks, identify and drop
attack packets.

* Distributed defense system for protecting web applications from DDoS attacks
[Xiang, Zhou, 03] is deployed in both victim and attacker source end.

» DefCOM (Defensive Cooperative Overlay Mesh) [Mirkovic, et al., 05] is a peer-
to-peer network of cooperative defense nodes. When an attack occurs, nodes
close to the victim detect this and alert the other nodes. Core nodes and those in
vicinity of attack sources suppress the attack traffic through coordinated rate
limiting. Three categories of nodes : Alert generator; Rate limiter; Classifier.

* Perimeter-based defense mechanisms [Chen, Song, 05] are completely rely on
the edge routers to cooperatively identify the flooding sources and establish rate-
limit filters to block the attack traffic.

RAID’06, Hamburg, Germany, September 20 — 22, 2006 4

Range of Simulation Alternatives

Apppry

A2ISD,] 40

UL -2y

Hardware
Testhed

FEmulation
Systern

Fully Virtualized
Systern

Packet-level Simuiation

The approach used in the paper

Simulation Tools: NS2,
OMNeT++ INET
Framework, SSF Net,
J-Sim, DaSSF,
PDNS,GTNetS, etc.

AMixed Abstraction
Simulation

Analytical Models
(for example
Epidemic Models)

104 103

1) i3 10%

Scalability

L0 107

Source: [K.Perumalla, S.Sundaragopalan-04]
RAID’06, Hamburg, Germany, September 20 — 22, 2006

5

‘l- Related Works on Teamwork Approaches

Malin Agents’ Teamwork Approaches:
« The Joint intention theory [Cohen et al., 91]
« The Shared Plans theory [Grosz et al., 96]

« Combined approaches ([Jennings,95], [Tambe,97],
[Tambe et al.,01], [Paruchuri et al., 06], etc.)

Important teamwork frameworks and systems:
= GRATE* [Jennings,95]
= OAA (Open Agent Architecture) [Martin, et all., 99]

= CAST (Collaborative Agents for Simulating
Teamwork) [Yen, et all., 01]

RETSINA-MAS [Gilampapa, Sycara, 02]
*Robocup Soccer” [Stone, Veloso, 99]
COGNET/BATON [Zachary, Mentec, 00]
Team-Soar [Kang, 01], etc.

RAID’06, Hamburg, Germany, September 20 — 22, 2006

Abstract Model of Team Interaction

Cammunication platjorm

We};i_ﬁ ntoln

P T v 2 0 T e
e +++++++++++++++++++++++

1

T
bty

e
%

b

e
e e Dl e e e e e e e
T e W e 0 A A S e
o . i
o i A
e, e R S
R t T, R T
Aadasasd OTILOLO] bttt A R, ety
b bt e i
P, ! EEEe b
e e e 2 oS, 2 2 o 2 h
T, R e N,
e L I, i
bk b b
R, b bt
e o R b,
o e e e e o e 2 e S S S S I e L L T e e PR S o o A R R T e e e
R, bR Ehbhe
b R, T
b bt b
b I, b
. bbb bt
S +++++++++++++ +++++++++++++++++
i LR F LT
e SR
e PR hE
o e e
I Rt
Rty by
bRy)
e bbbt
b bbby
. - o %,) L) L e
" " e
R
i
ik,
e
b
b
i
. i)
b
ety
: i
o cez o B 2 % et
Lty Lo t t bty
Sy 3 ey
ey e]
E . . e

the interaction of
Agent [
~+ teatns

T

-+ basic functions

Agent 2 :
e e e s .::::::'55
Agent £ Z;Z;Z;}
o Comraunication environrment
R e
**IEE{% Ilessage exchange

protocols

o
o
o

protocaols

Ilndels of ﬁmn:tinﬂjng envirorment: topological and fimctional components

RAID’06, Hamburg, Germany, September 20 — 22, 2006

Structure and Model of Attack Team

Structure of attack team

__

“Daemon”

\ DDoS

“Daemon” m—— oack

Malefactor |72 “Master” /‘ target

“Daemon”

Meta-model of attack

team (screenshot of Daemon I-——-——-—-----;_ ____________ >

meta-model editor)

AtackFrotocol r E";.._ G e

RAID’06, Hamburg, Germany, September 20 — 22, 2006

Structure and Model of Defense Team

Structure of defense team

Defended host |e-----------] “Sensor’ f-------- “Filter” |a--------] Attack agent
(Sampler)
Detector “Investigator”
| StatzCollectar I | Detectork I | FilterE | Investigatork
[(T ——— —

Meta-model of

Detector S T S AR
defense team Q
(screenshot of :Fmer I'"'“'"'"'__T_'"'"'"'"'qi _______________ ?'"'"'"'"'_q@ _________
meta-model i e e P
editor)
| StatsTransmission r _D;._ _¢_ E_._._._._._._.E_
| OhOosAlerPFrotocol }._._._é ____________ _D_ AO ____________ Q ________

RAID’06, Hamburg, Germany, September 20 — 22, 2006

Main Classes of Attack and Defense Parameters.

u

I e Victim type

Attack module

o Attack type

e Impact on the victim
e Attack rate dynamics

e Persistent of agent set
e Possibility of exposure
e Source address validity
e Degree of automation

Parameters of Defense Efficiency

e Deployment location

Defense module

e Mechanism of cooperation
e Covered defense stages

e Attack detection technique

e Attack source detection technique
e Attack prevention /counteraction technique

e Model data gathering technique
e Determination of deviation from model data

Efficiency Parameters:
e List of detectable attacks

 Volume of the input traffic
before and after filters

» Percent of the normal
traffic and the attack traffic
on entrance to attacked
network

» Rate of dropped legitimate
traffic (false positive rate)

» Rate of admitted attack
traffic (false positive rate)

» Attack detection and attack
reaction times

« Computational complexity
. etc.

RAID’06, Hamburg, Germany, September 20 — 22, 2006

10

Architecture of Simulation Environment

DDoS Framework

| Device models: attack bot, firewall |

Application models: attack and detense library,
packet analyzer, filtering table

A Jb

Internet Simulation
Framework
(OMNeT++ INET)

Device models: host,
router

Application models

Protocol models (network
and transport layer)

| Link models

= = J

&
o

A Jb

Multi-Agent System

Agent models: basic
agent, attack and defense
agents

Protocol models: agent
communication language,
application-agent
protocol

= JU

Simulation Framework (OMNeT++)

Simulation model

Component library

User interface: graphical, command

Simulation kernel

RAID’06, Hamburg, Germany, September 20 — 22, 2006

11

i User Interface of Simulation Environment

M an ag eme nt File Edit Simulate Trace Inspect

window

Agent

I.-‘-.Iig"
g

1w

ad_tfpapp

a_zanfplendry:

ad ztatzhann

OMMeT ++,/Tken¥ - coop_methods

View Options
B
UHTIL...

=101 x|

Help

| 2] | b |2 A0 | D A 2] QU

»

FilIr

_(coutvect
El

=10l %

Run #8-eot® method! Event #410162 | T=600.0115 (10m Os] | Next coop

hzgz scheduled: 44 ||Msgs created: 114077 | ldzgz present: 1268
Evdzec nda ||Simsecx'seu:: rita

udp data generate next udp packet, CusumlP . timer, .
pREndTxEvent generate nest Udp packetOMM-ESTAE, timer ...

+1e-5§ +1e-7 +1e-6 +1e-3 +1e-4 +0,

| Evdsimzec: nda

Received [IPD atagramjudp data far transmission
Starting trangzmizzion of [PPPFramejudp data

2Rd23.2149
12942 2264
«— |
- 451,
260118029 372714907 EO0. 011504

|+

Tl

Lazt value: =573 86242 [9m 39z] walue=1028 64 | O ptiohz. ..

J [etd::vector<GenericRule *»] coop_methods.i_d_i[E].filkerT ak

General 1]

class std:vector< GenercRule *» {
GenenicRule * rules_wvector[d] = 10.0.0.61 1
GenericRule * rulez_wector[1] = 192.168.01 1
GenencRule * rules_wvector[2] = 192.168.010 1
GenencRule * rules_wectar[3] = 192.163.011 1
GenericRule * rules_wvector[d] = 192.168.012 1 LI

<l 1 a_sme[0]

IExl 1A=

Ldr

S ampler Hﬁlg
- if
DaEmDM] : Dlaemo ﬁ%
:zleEping

aclls] < = i
Loll6] i_de(s] e

Simulated network

RAID’06, Hamburg, Germany, Se

coop_methods GULAT TACK_TEAR
(&) DRV ATTACK TEAM ACTIQNG
a
(@ TEAM ESTABLISHING ATTACKING

aZ a3

ptember 20 — 22, 2006

Network

J [cOutyector] coop_methods.d_firewall. ppp(2].thru[0]. thruput [param ete rS

Agent
work
parameters

Teamwork
parameters

12

Simulation Example 1: the Internet
‘.i Fragment and Agent Teams

d_=r
D etectar:init
L)
d_det ler:init
d_firews
dter:init

] - defense teams
c—o- attack agents 0 hon-lE

Daen:init
| &
T 5 4li[3]

li D aermon:init
)
a_ch[Z]

f Dae n:init
ply: ¥ Aolif1] &
L

¥ & T Cli[7] J=
; / ¥ =]
36 IP node=
desz
(daemons) ™y :

- attack agent {master)

= - victim configurator . ‘ “ r'[
{ i
3 L3 ’ Dn:init
A o &

D aermor:ini * e
@
a clilElL &

¥
£ =~

i_cli[5]

L=

i_chi[0]

=]

i_clh[3]

i_ch[4]

w8 AT ﬁhﬁi!

- '.I?'é“ : r-[E]\'\ L ohEr
= .- a_cilz]
&'l

.] I,l'a_ — [Dn:init]

a_ch[d]
Daen:init
)
- a_cli[7]

RAID’06, Hamburg, Germany, September 20 — 22, 2006

13

Learning Mode (1)

The main task of learning mode is to create the model
of generic traffic for the given network.

The clients send the requests to the server and it
replies.

At this time sampler analyses requests and uses them
to form the models and parameters for defense different
methods.

During the learning it is possible to watch the change of
traffic models.

RAID’06, Hamburg, Germany, September 20 — 22, 2006 14

Learning Mode (2)

{std::vector<AR_MormHop *=) ...p[0].ad_skta

|

_ o] x|

[etd:wector<aBR_MormHop ==] power.d_firewall tecpdpp[d]. ad_statznapp. *[nhpw. gety ectorPrr

Seneral]

class std;vector<AR_MormHop *:

AR_MormHop * *[nhpy. getyectarPr[]][0] =
AHE_MormHop * “[nhpy. getyectorPrr]1[1]
AR MHaoarmmHop # “[nhpw. getyyectarPr][2]
AR _MHaoarmHop # *[nhpw. getyectarPr[])[3]
AHE_MormHop * “[nhpwy. getyectorPr[]][4]
AHE_MormHop * “[nhpy. getyectorPr]1[5]
AR _MHaoarmHop # *[nhpw. getyectarPr])[E]
AR_MormHop * *[nhpwy. getyectarPe]1[¥]
AE_MormHop * “[nhpy. getyectorPrr]1[E]
AR MHaormHop # *[nhpw. getyectarP(][3] =

AR _MHaormHop # *[nhpw. getyectarP(1[10] =
AHE_MormHop * “[nhpy. getyectorP]][11]
ABF_MormHop * “[nhpy. getyectorPr]][1 2]
AR _MHaoarmHop # *[nhpw. gefyectarPr11[1 3]

IP=10.0.0.36
IFP=10.0.0.35
IP=10.0.0.27
IF=10.0.0.34
IFP=10.0.0.25
IF=10.0.0.24
IF=10.0.0.31
IP=10.0.0.23
IF=10.0.0.25
IFP=10.0.0.26

IF=10.0.0.2

IF=10.0.0.2

IP=10.0.0.3

IFP=10.0.0.3

< =)
Hop=2 Tirmme=280.007
Hop=0 Tirme=220.003
Hop=5 Time=271.374
Haop=0 Time=296.01
Hop=4 Time=263.711
Hop=3 Time=264.229
Hop=3 Time=291.662
Hop=3 Time=285%.36
Hop=5 Time=263.152
Hop=4 Time=2392.011
HHop=4 | Time=236.011
! Hop=4 |Time=273.602
I Hop=5 |Time=274.052 —
! Hop=0 |Time=220.007
i

List of hosts that sent requests to server and hops to

them after 300 sec of learning

RAID’06, Hamburg, Germany, September 20 — 22, 2006

Number
of hops

15

Learning Mode (3)

beginning

{cOut¥ector) ..all.tcpApr [0].ad_statsnapp

£l

rmany new addresses in the

=10l x|

many new addresses in the interval
between 0 and 50 seconds

(std:vector <AR_NormlIP *=) ..p[0].ad_s

2

7 \ . [zt wector<AR_MommlP <= pnwer.d_smymmm?#:!ﬁmc
. [cOutyector] power. :I_firewaN:pﬁ ppl0]. ad_statznapp.Mew [Pe value [ptrlzBOE17E] General |] (\
3 class std:vector<AR_MormlP = { =
the maximum AR_MarmlP * *[hipw. getYectorP[[d] = IP=10.0.0.33 Time=12.0003
. AR_MarmlF * “[nipey. getectarPE(Y] = IP=10.0.0.36 Tirne=14.0003
Is 6 addresses, AF_MomlP * “[nipv.getvectorPi(I[A] = IP=10.0.0.37 Time=14.0001
the tlme AR_MarmlP * *[hipw. getYectorP[3] = IP=10.0.0.25 Time=23.1377
. . AR_MarmlP * *[hipw. getYectorP[4] = IP=10.0.0.27 Time=21.9345
interval is 10 AR_MormlP * “[nipv.gefWectarPi()[4] = IP=10.0.0.235 Time=21.9347
1.51 AR_MormlP = #[nipw. gefYectarPH[E] = IP=10.0.0.24 Time=32.034
Secon(_jS’_ and AR_MarmlP * *[hipw. getYectorP[[4] = IP=10.0.0.23 Time=35.1563
the shift is 3 AR _MarmlP = “[nipy_getvectorPi(][d] = IP=100.0.31 Time=33 8222
AR_MarmlP * *[hipw. getYectorP[[4] = IP=10.0.0.23 Time=37.3439
seconds AR_HormlP * “[nipv. getvectaPi[{0] = IP<10.0.0.26 Tims=39.8259
AR_MomlP = “[hipw.getectorPa[Y1] = IP=10.0.0.23 Time=393.925
AR_MarmlP * “[nipw. getYectarPH[1V] = IP=100.0.22 Time=42.0336
0 AR_MarmlP * “[hipw. getYectarP[[1oN\= IP=100.030 Time=45.5316 —
-101 0 300 AR_MarmlP * “[hipv. getvectarPr(])[14] =

| Last value: t=2970005 [4m 573] walue=0

| Optiohs... |

Change of new IP addresses
amount

List of clients requested server and

considered as leqgitimate after 300 sec

of learning

RAID’06, Hamburg, Germany, September 20 — 22, 2006

Learning Mode (4)

1742.4 bit/s

{cOut¥ector) ..irewall.tcp App[0].ad_staks

The maximum value was

_ O] x|

| {std::wector<AR_Stats *=) ...pp[0].ad s - |I:I|i|
J [cOutwector] power.d_firewall tgpipp[0]. ad_statznapp BPS walue [pir02BO0B1ES] J
17424
l [ztd: wector<AR_Statz *»] power.d_firewall tepdpp[0]. ad_statznapp. *[hew. get
\f General 1]
871.21 claszs stdwector<AR_Stats *» {
AR_Statz * *[hev.getectorPh())[0] = IP=10.0.0.31 Bitz=hEa0
AR _Statz * *[hav getWectorPh[))1] = IP=10.0.0.22 Bitz=4832
AR _Statg * “[hav.getectorP)[2] = IP=10.0.0.25 Bitz=hR040
. AR Statg * *hev.getectorP)][3] = IP=10.0.0.27 Bitz=h704
53 g 300 1
Last walue: t=297 0005 [4m 57s] walue=1195 2 | Options. .. I

Values of bits in
interval 10 seconds

Change of BPS (bit per

second) parameter

Values of transmitted bits for different
hosts

RAID’06, Hamburg, Germany, September 20 — 22, 2006 17

Decision Making and Acting

- Normal work (interval 0 — 300 seconds)
- Defense team: Formation, start using BPS method

- Attack team: Formation; After 300 seconds - begins the attack actions
(intensity of attack for every daemon - 0.5, no IP spoofing)

- Defense team: Data processing, attack detecting (using BPS) and reacting
(interval 300 — 350 seconds); Blocking the attack, destroying some attack
agents (interval 300 — 600 seconds)

- Attack team: After 600 seconds - automatic adaptation (redistributing the
intensity of attack (0.83), changing the method of IP spoofing (Random))

- Defense team: data processing, failing to detect the attack (using BPS
method) — Detector sees that the input channel throughput has noticeably
lowered, but does does not receive any anomaly report from sampler because
BPS does not work.

- Defense team: Changing defense method on SIPM (automatic adaptation);
Data processing, attack detecting (using SIPM method) and reacting —
(interval 600 — 700 seconds)

RAID’06, Hamburg, Germany, September 20 — 22, 2006 18

Scheme of Acting

Graphs of channel throughput

—-— povwer. d_y pppl0] thra[1]: thrapot [bitYsec] [(pomler wec] ’ qo\‘ ,\.
| ‘ / /
—i— power.d_r ppp[1] thra[0]: thruput (bittsec) [pom]ep . wec) AttaCk ’ / ' ‘/ \
10000 — . . ‘f\ [(./'\ /.
traffic (RS VA
7 I /
‘;‘/.\.’ \ \\\6 ‘JJJ‘ ‘\.’ J \\“g“ .\‘ \\\“C‘
_ _ L Normal
000 _ Detecting attack traffic . traffic

and making decision
Blocking attack traffic

R 7

— S e—

Attack Start to Attack mode Start to
start block change block
RAID’06, Hamburg, Germany, September 20 — 22, 2006 19

Generic network traffic

‘. Simulation Example 2: Cooperation
between defense teams

Models of cooperation between distributed
defense teams:
(1) filter-level cooperation
(2) sampler-level cooperation
(3) “poor” cooperation:
(4) “full” cooperation
Such cooperation schemas are used in the
cooperative DDoS defense methods:
COSSACK, Perimeter-based DDoS defense,
DefCOM, Gateway-based, ACC pushback, MbSQD,
SOS, tIP router architecture, etc.)

RAID’06, Hamburg, Germany, September 20 — 22, 2006 20

The Internet fragment and agent teams

Daemor:init) 1 o
I@ LD aemor:init

O aemor;ingh,
m E. et
a_ch{d] _

iy _- 3 —— q |
DEE. 1] Ier:init e i d [

<25 Filt_er;l L]

[Freestigator:init
£

IE

a_cli{E] :
i_ch[B] 1L det[E]

e

i_fM9]
EE IF nodes
¥ 0 niop-l B

" b N

| 5 y o
el gl T Tl [t Rl 1 Qo
i_cli3] et i - fui5] . T it
P i
_ 4 s K S ampler:init
&5 0] Bl sﬁ:init il

1138 =, -=,.|._|H

[4]

B 5 i_fw[m_‘ﬁcn[?i]t

U .]"[1] _det[3]

[]- defense teams

- attack agents
(daemons)

RAID’06, Hamburg, Germany,

= - victim
September 20 — 22, 2006

(7] (&)- attack agent (master)

21

Volume of input traffic before and after
the filter of the team
which network is under attack (BPS)

20000+

10000

A ’

10000+

200

300 400 500 200 300 400 500

No cooperation

20000+

10000

20000+

10000+

200

Sampler cooperation Full cooperation
RAID’06, Hamburg, Germany, September 20 — 22, 2006 22

Volume of input traffic before and after
the filter of the team
which network is under attack (SIPM)

20000+
\M\
SV NP U,

10000+

200 300 400 500
No cooperation
\ f\ A\
PPV
10000+
07 : - ! T
200 300 400 .

Sampler cooperation
RAID’06, Hamburg, Germany,

20000+

10000+

200 300 400 500

Filter cooperation

20000+

100001 T e e

0,
200 300 400 500

Full cooperation
September 20 — 22, 2006 23

False Positive and false negatives

o On0L
100% o O False positive
80% | O False negative
600/0 T 410/ """
0]
o
BPS 40% | 33% st
20% 1 {1 "1 1 -
0% 0% 0% 0%
0% ‘ .
NO coop Filtercoop Sampler FULL coop
coop
0
100% O False positive
80% o O False negative
SIPM G
0 R
e 17% 24% 24%
DOy it e A0
0% 0% 0% 0%
0% .

NO coop Filtercoop Sampler FULL coop
coop

RAID’06, Hamburg, Germany, September 20 — 22, 2006

‘- For more information please contact

Prof. Igor Kotenko
Head of Computer Security Research Group,

St. Petersburg Institute for Informatics and Automation
of Russian Academy of Sciences (SPIIRAS)
Ivkote@iias.spb.su
http://space.iias.spb.su/ai/kotenko/
http://www.comsec.ru

Acknowledgement

This research is being supported by grant of Russian Foundation of
Basic Research (Ne 04-01-00167), grant of the Department for
Informational Technologies and Computation Systems of the Russian
Academy of Sciences (contract Ne3.2/03) and partly funded by the EC
as part of the POSITIF project (contract IST-2002-002314).

RAID’06, Hamburg, Germany, September 20 — 22, 2006 25

