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‘-i Goal of our Research

= The goal of our research is development of theoretical
and practical (instrumental) basis for agent-based
modeling and simulation for cyber warfare.

= The paper considers the approach and software
simulation tool developed for comprehensive
Investigation of Internet DDoS attacks and defense
mechanisms.

= The simulation tool can be characterized by three main
peculiarities:
- agent-oriented approach to simulation,
- packet-based imitation of network security processes,
- open library of different DDoS attacks and defense
mechanisms.
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‘h Related Works on Defense against DDoS

. 'IJhe main task of defense systems against DDoS is to accurately
detect these attacks and quickly respond to them [Xiang, Zhou, 04 ].

* It is equally important to recognize the legitimate traffic that shares
the attack signature and deliver it reliably to the victim [Mirkovic, et
al., 05].

» Traditional defense include detection and reaction mechanisms
[Xiang, et al., 05].

« Different network characteristics are used for detection of malicious
actions (for example, the source IP address [Peng, et al., 05 |, the
traffic volume [Gil, Poletto, 03], and the packet content
[Papadopoulos, 03]).

» To detect the abnormal network characteristics, many methods can
be applied (for instance, statistical [Li, et al., 05], cumulative sum,
pattern matching, etc).

» As a rule, the reaction mechanisms include filtering [Park, Lee, 01 |,
congestion control [Mahajan, et al., 02] and traceback [Kuznetsov, et
al., 02].
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Related Works on Defense against DDoS
‘h by Cooperative Actions

» Active Security System, comprising components that actively cooperate in order
to effectively react to a wide range of attacks [Canonico,et al., 01 ].

» COSSACK [Park, Lee, 01] forms a multicast group of defense nodes which are
deployed at source and victim networks.

» Secure Overlay Services (SOS) [Keromytis, et al., 03] uses a combination of
secure overlay tunneling, routing via consistent hashing, and filtering.

A collaborative DDoS defense system proposed in [Xuan , et al., 02] consists of
routers which act as gateways. They detect DDoS attacks, identify and drop
attack packets.

* Distributed defense system for protecting web applications from DDoS attacks
[Xiang, Zhou, 03] is deployed in both victim and attacker source end.

» DefCOM (Defensive Cooperative Overlay Mesh) [Mirkovic, et al., 05] is a peer-
to-peer network of cooperative defense nodes. When an attack occurs, nodes
close to the victim detect this and alert the other nodes. Core nodes and those in
vicinity of attack sources suppress the attack traffic through coordinated rate
limiting. Three categories of nodes : Alert generator; Rate limiter; Classifier.

* Perimeter-based defense mechanisms [Chen, Song, 05] are completely rely on
the edge routers to cooperatively identify the flooding sources and establish rate-
limit filters to block the attack traffic.
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Range of Simulation Alternatives
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‘l- Related Works on Teamwork Approaches

Malin Agents’ Teamwork Approaches:
« The Joint intention theory [Cohen et al., 91]
« The Shared Plans theory [Grosz et al., 96]

« Combined approaches ([Jennings,95], [Tambe,97],
[Tambe et al.,01], [Paruchuri et al., 06], etc.)

Important teamwork frameworks and systems:
= GRATE* [Jennings,95]
= OAA (Open Agent Architecture) [Martin, et all., 99]

= CAST (Collaborative Agents for Simulating
Teamwork) [Yen, et all., 01]

RETSINA-MAS [Gilampapa, Sycara, 02]
*Robocup Soccer” [Stone, Veloso, 99]
COGNET/BATON [Zachary, Mentec, 00]
Team-Soar [Kang, 01], etc.
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Abstract Model of Team Interaction
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Structure and Model of Attack Team

Structure of attack team
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Structure and Model of Defense Team

Structure of defense team
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Main Classes of Attack and Defense Parameters.

u

I e Victim type

Attack module

o Attack type

e Impact on the victim
e Attack rate dynamics

e Persistent of agent set
e Possibility of exposure
e Source address validity
e Degree of automation

Parameters of Defense Efficiency

e Deployment location

Defense module

e Mechanism of cooperation
e Covered defense stages

e Attack detection technique

e Attack source detection technique
e Attack prevention /counteraction technique

e Model data gathering technique
e Determination of deviation from model data

Efficiency Parameters:
e List of detectable attacks

 Volume of the input traffic
before and after filters

» Percent of the normal
traffic and the attack traffic
on entrance to attacked
network

» Rate of dropped legitimate
traffic (false positive rate)

» Rate of admitted attack
traffic (false positive rate)

» Attack detection and attack
reaction times

« Computational complexity
. etc.
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Architecture of Simulation Environment
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| Device models: attack bot, firewall |

Application models: attack and detense library,
packet analyzer, filtering table

A Jb

Internet Simulation
Framework
(OMNeT++ INET)

Device models: host,
router

Application models

Protocol models (network
and transport layer)

| Link models

= = J

&
o

A Jb

Multi-Agent System

Agent models: basic
agent, attack and defense
agents

Protocol models: agent
communication language,
application-agent
protocol

= JU

Simulation Framework (OMNeT++)

Simulation model

Component library

User interface: graphical, command

Simulation kernel

RAID’06, Hamburg, Germany, September 20 — 22, 2006

11



i User Interface of Simulation Environment
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Simulation Example 1: the Internet
‘.i Fragment and Agent Teams
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Learning Mode (1)

The main task of learning mode is to create the model
of generic traffic for the given network.

The clients send the requests to the server and it
replies.

At this time sampler analyses requests and uses them
to form the models and parameters for defense different
methods.

During the learning it is possible to watch the change of
traffic models.
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Learning Mode (2)
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Learning Mode (3)

beginning
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Learning Mode (4)
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Decision Making and Acting

- Normal work (interval 0 — 300 seconds)
- Defense team: Formation, start using BPS method

- Attack team: Formation; After 300 seconds - begins the attack actions
(intensity of attack for every daemon - 0.5, no IP spoofing)

- Defense team: Data processing, attack detecting (using BPS) and reacting
(interval 300 — 350 seconds); Blocking the attack, destroying some attack
agents (interval 300 — 600 seconds)

- Attack team: After 600 seconds - automatic adaptation (redistributing the
intensity of attack (0.83), changing the method of IP spoofing (Random) )

- Defense team: data processing, failing to detect the attack (using BPS
method) — Detector sees that the input channel throughput has noticeably
lowered, but does does not receive any anomaly report from sampler because
BPS does not work.

- Defense team: Changing defense method on SIPM (automatic adaptation);
Data processing, attack detecting (using SIPM method) and reacting —
(interval 600 — 700 seconds)
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Scheme of Acting

Graphs of channel throughput
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‘. Simulation Example 2: Cooperation
between defense teams

Models of cooperation between distributed
defense teams:
(1) filter-level cooperation
(2) sampler-level cooperation
(3) “poor” cooperation:
(4) “full” cooperation
Such cooperation schemas are used in the
cooperative DDoS defense methods:
COSSACK, Perimeter-based DDoS defense,
DefCOM, Gateway-based, ACC pushback, MbSQD,
SOS, tIP router architecture, etc. )
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The Internet fragment and agent teams
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Volume of input traffic before and after
the filter of the team
which network is under attack (BPS)
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Volume of input traffic before and after
the filter of the team
which network is under attack (SIPM)
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False Positive and false negatives
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